THE STRUCTURE OF AMPHOTERICIN A

I. MASS SPECTROMETRIC ANALYSIS OF DODECAHYDROAMPHOTERICIN A

PAWEŁ SOWIŃSKI, PAWEŁ KOŁODZIEJCZYK and EDWARD BOROWSKI

Department of Pharmaceutical Technology and Biochemistry, Technical University of Gdańsk, 80-952 Gdańsk, Poland

(Received for publication October 8, 1984)

Amphotericin A had been transformed into dodecahydroamphotericin A by hydrogenation. Subsequently, the product obtained was reduced with metal borohydrides or borodeuterides and derivatized to volatile compounds which were analyzed by mass spectrometry.

Amphotericin A, a tetraene macrolide antibiotic, is formed by *Streptomyces nodosus* in coproduction with a heptaene macrolide, amphotericin B. Both compounds have been isolated in pure form¹⁾. The structure of amphotericin B, one of the most commonly used agents in antifungal therapy, has been elucidated^{2,3)}. Amphotericin A has been chemically and biologically partially characterized¹⁾, but no data on its chemical constitution have been reported.

In this report we present the evidence for the structure of dodecahydroamphotericin A. The pure, crystalline amphotericin A with $E_{1em}^{1\%}$ 1,350 at 304 nm (methanol) used in these studies originated from E. R. Squibb and Sons, New Brunswick, N.J., USA.

The molecular weight of amphoteric A (I) determined by a MS method was found to be 925. The SIMS method gave the m/z 926 for ion (M+H)⁺. For N-acetyl methyl ester of I the m/z 1,004 for ion (M+Na)⁺ was obtained by FD method.

The constitution of the carbon skeleton and assignment of oxygen functions were determined on the basis of the mass spectra of N-acetyl-N-methylteradeca-O-methylheptadecahydroamphotericin A (II) and its deuterio analogue (III).

Compounds II and III were obtained by the following reactions: *N*-acetylamphotericin A underwent smooth catalytic hydrogenation of the polyene chromophore, followed by reduction of the carbonyl groups with sodium borohydride or borodeuteride, respectively. Subsequently the carboxyl group was esterified with diazomethane and furthemore, together with the lactone linkage was reduced with lithium borohydride or lithium borodeuteride in anhydrous tetrahydrofuran. Methylation with methyl iodide in tetrahydrofuran in the presence of sodium hydride completed the preparation of compounds II and III.

The products of the above reactions were purified by column chromatography and analyzed by mass spectrometry. The MS data for compounds II and III are given in Table 1.

The molecular ions were m/z 1,181 for II and m/z 1,186 for III, respectively. A series of elimination ions originating from the parent ions were observed: a: M-CH₃, m/z 1,166 (1,171)*; M-CH₃-CH₃OH, m/z 1,134 (1,139), b: M-CH₃CO-CH₃OH, m/z 1,106 (1,111), c: M-n CH₃OH, m/z1,149 (1,154); m/z 1,117 (1,122); m/z 1,085 (1,090); m/z 1,053 (1,058) etc., d: M-MycO**-n

^{*} Values in brackets are related to deuterio analogue III.

^{**} Myc means N-acetyl-O-trimethylmycosaminyl residue, m/z 230.

Fig. 1. Diagnostic fragmentations of compounds II $(m/z \ 1,181)$ and its deuterio analog III $(m/z \ 1,186)$.

11(111)

CH₃OH, m/z 935 (940); m/z 903 (908); m/z 871 (876); m/z 839 (844); m/z 807 (812); m/z 775 (780). The fragmentation patterns for compounds II and III are given in Fig. 1.

The fragment ions at m/z 59, 131, 672, 103, 161, 233, 277, 335, 393, 451, 553 formed by ether-type cleavage indicated the location of oxygen functions in **II**. Elemental composition of the following ions: 59.0494 (C₃H₇O), 131.1069 (C₇H₁₅O₂), 103.0755 (C₅H₁₁O₂), 233.1750 (C₁₂H₂₅O₄), 277.2017 (C₁₄H₂₉O₅), 335.2437 (C₁₇H₃₅O₈), 451.3273 (C₂₃H₄₇O₈) was determined by HRMS, and confirmed the proposed fragmentation pattern. Although, the fragment ions at m/z 161, 393, 553 exhibited low relative intensity, the ions at m/z 129, 329, 489 formed by loss of methanol from the appropriate fragment ions were clearly measurable and assigned as 129.0916 (C₇H₁₂O₂), 329.2324 (C₁₈H₃₃O₅), 489.3425 (C₂₈H₄₉O₈). A more detailed discussion of the fragmentation and elimination patterns for analogous polymethoxy ethers was published earlier^{4,50}.

Two types of elimination of mycosamine from the fragmentation ions were also observed: from ion m/z 948 the aminosugar moiety was eliminated with simultaneous transfer of one hydrogen atom from the carbohydrate ring to the resultant ion. Subsequent elimination of methanol gave the following ions:

 m/z 607.5313 (C₃₈H₇₁O₅); 948−(MycO−H)−3×CH₃OH m/z 575.5035 (C₃₇H₆₇O₄); 948−(MycO−H)−4×CH₃OH m/z 543.4769 (C₃₆H₆₃O₃); 948−(MycO−H)−5×CH₃OH

2. Another type of elimination of the aminosugar was found for ion m/z 672 (cleavage of C-16–C-17 carbon bond). In this case a hydrogen atom is eliminated from the fragmentation ion together with the aminosugar moiety. The following ions of this series were detected:

m/z 425.3990 C₂₇H₅₃O₃; 672-MycOH

and the ions, m/z 393.3734; m/z 361.3471 and m/z 329.3206 were formed as a result of the successive elimination of methanol molecules.

The ion at m/z 425 is a doublet, the second component (m/z 425.29057, $C_{24}H_{41}O_6$) was formed from the ion m/z 553 (553-4×CH₃OH).

In the region of lower ion values were found ion m/z 230 (base peak) resulting from the cleavage of the glycosidic linkage, and ion of m/z 246 (Myc–O). Ions originating from the fragmentation of the aminosugar moiety were also found⁶⁾: m/z 201, 198, 186, 166, 156, 142, 129, 101, 87.

The location of mycosamine was determined on the basis of the fragment ions at m/z 1,094, 672,

m/z	Relative intensity (%)		m/z	Relative intensity (%)		m/z	Relative intensity $(\% \times 10)$		m/z	Relative intensity (%×100)	
	II	ш		II	III		Π	III	41 (A. 1997)	II	III
*			149	20		337		62	744	8	
59	84	58	155	21		351	40		745	6	
67	14	12	156	27	30	355	90	_	746	_	6
69	19	18	157	14	12	358		42	747	·	8
71	58	29	166	14	11	361	70	33	748		10
72	21	33	168	16	13	367	40	_	749	_	7
73	20	23	169	59		387	30	_	759	7	
75	88	54	170	22	20	393	60	24	760	6	
76	_	16	171	12	39	399	40	_	773	7	
79	14		172		11	425	66	32	774	53	
81	19	15	175	12		***			775	189	
82		10	181	19		430		23	776	116	
83	14	14	186	13	12	451	71	_	777	60	50
84		10	198	10		452	22		778		62
85	24	20	201	67	42	453		20	779	_	96
87	21	24	202	16	14	454		43	780		104
89		12	203		34	455		18	781	_	79
91	12		204		10	457	34		788	56	
93	18		207	16		462		21	789	58	
95	18	16	213	14		489	22		791	71	
97	42	20	215		10	494		20	792	53	
98		22	230	100	100	543	32	_	805	67	
99	24	25	231	38	30	546		15	806	64	
100	_	12	232	80		547		10	807	191	_
101	56	40	233	42		575	28		808	131	
102		15	235		30	576	12	10	809	78	54
103	58		239	13		577		13	810	64	62
104		12	245	11		578		17	811		87
105	20	42	246	44	35	579		13	812	_	146
107	12	12	247		11	607	22		813		104
109	17	14	271	18		****		15	814		54
111	16	12			10	610		15	815	53	
112		12	**	~		623	11	_	820	60	
114	10	20	277	6		626	6	6	821	64	54
117	19	12	219	7	4	647	10	_	824	53	54
121	13	12	294	_	3	655	10		827		50
123	19		297	14		672	8	6	828	_	54
125	13		298	3		679	12		829		63
126		10	300		5	683		6	838	53	
127	19		303	10	3	711	13		839	111	_
128	67	19	305	11	5	712	01		840	/6	50
130	18	22	323	3		715	0	8	843		79
131	27	27	326		4	717		5	845		54
135	11		329	12	4	719	6	_	850	62	
137	23	—	330	3		720	6		852	253	_
139		13	331	4	3	741	6	-	853	178	58
142	25	21	332		4	742	6		854	104	83
143	15		335	10		143	14		822	53	216

Table 1. Ions observed in the mass spectra of *N*-acetyl-*N*-methyltetradeca-*O*-methylheptadecahydroamphotericin A (II) and its heptadeuterio analogue (III).

Ions of relative intensities above * 10%, ** 2.5%, *** 1%, **** 0.5% and ***** 0.2% have been tabulated.

m/z	Relative intensity (%×100)		m/z	Relative intensity (%×100)		m/z	Relative intensity (%×100)		m/z	Relative intensity (%×100)	
	п	III		II	III		п	ш		II	III
856	_	171	954		21	1064	27		1122		38
857		83	966	28		1065		20	1123		33
858		79	988	38		1066		22	1124	27	_
859		54	990	27	_	1067	_	41	1133	29	
871	64		991	27	_	1068	_	25	1134	42	
876		58	1008	29		1085	24		1135	45	
884	64	—	1020	24		1090	27	23	1136	27	_
887	_	104	1021	24		1091	27	20	1138	_	20
888	_	58	1025		27	1092	40	_	1139	-	33
889		50	1026		21	1093	27	23	1140		25
902	56	_	1030	21		1094	74		1149	30	
903	80	_	1032	24		1095	49		1150	36	
904	67	_	1036	27		1096	22	25	1151	27	
907	_	50	1041		20	1097	—	29	1152	21	
908		83	1046	24		1098	_	44	1154		24
934	82		1048	25	_	1099		81	1155		20
935	102		1049	29		1100		51	1166	44	
936	71		1051	33		1101	_	20	1167	36	—
937	—	58	1052	38		1105	27		1168	20	
938	_	50	1053	27		1106	60		1170		22
939		75	1054	27		1107	33		1171		35
940		125	1055	—	20	1108	24	_	1172		26
941		67	1056	—	25	1110		20	1179	20	
****			1057		27	1111		28	1180	20	
948	32		1058		21	1112		17	1181	20	
949	27	_	1059		20	1117	40		1185		20
950	27		1060	29		1118	42		1186		20
951		25	1061	24		1119	27				
952		33	1062	58		1120	27				
953		37	1063	42	—	1121		20			

Table 1. Continued.

553, 131 (II, Fig. 1). The ions at m/z 1,094 and 672, containing mycosamine in their structure, limited the positions for mycosamine to C-17, C-19 and C-35. However, the ions at m/z 553 and 131 which do not contain mycosamine in their structures left only one possibility for the location of the mycosamine moiety – at C-19.

The comparison of the mass spectra of compounds II and III identified the site of incorporation of two deuterium atoms at C-1 of III, another two deuterium atoms at the methoxymethyl group attached to C-16 and only one deuterium atom at carbon atom C-13. The position of deuterium labeling and the number of deuterium atoms attached to the individual carbon atoms in the deuterio analogue indicate that the ketone function is present at C-13 of the antibiotic, while the carboxyl groups are linked with C-2 and C-16 carbon atoms, respectively.

Thus, upon the results presented above the structure of dodecahydroamphotericin A has been elucidated and appears to be identical with the structure of tetradecahydroamphotericin $B^{2,3}$.

The evidence for the other amphotericin A structural features such as the lactone linkage, hemiketal ring fusion and location of polyene chromophore will be discussed in the second part of this report.

Experimental

General Procedures

EI and FD mass spectra were obtained on a Varian MAT 711 spectrometer employing the direct probe technique. The conditions for electron impact were as follows: electron energy, 70 eV, emission current, 0.8 mA; ions source temperature, 250°C; resolution, 1,000 and 10,000 for higher mass values. The conditions for field desorption were as follows: heating current, $14 \sim 18$ mA; ions source temperature, $70 \sim 100^{\circ}$ C; acceleration voltage, 8 kV; extraction voltage, 4 kV. SIMS spectrum was obtained on a modified Hitachi RMU-6 spectrometer.

Analytical thin-layer chromatography was carried out on Merck precoated silica gel 60 plates employing the following solvent systems:

a) EtOAc - H_2O - AcOH, 4:1:1.

b) $C_{\mathfrak{g}}H_{\mathfrak{g}}$ - EtOAc - EtOH, 5:1:1.

N-Acetylamphotericin A

To amphotericin A (200 mg) suspended in a mixture of N,N-dimethylformamide (3 ml) and water (1 ml) was added triethylamine (104 μ l) followed by acetic anhydride (71 μ l). The mixture was stirred for 25 minutes under nitrogen and additional portions of triethylamine (52 μ l) and acetic anhydride (35 μ l) were added. After another hour of continuous stirring, water was removed under vacuum, methanol (2.5 ml) was added, and the product was precipitated with a mixture of diethyl ether - hexane (2:1). The precipitate was dissolved in 2 ml of methanol and precipitated again with diethyl ether, washed with fresh diethyl ether, centrifuged and dried to give 170 mg of *N*-acetylamphotericin A.

N-Acetylamphotericin A Methyl Ester

A solution of diazomethane in diethyl ether was added to a solution of 5 mg of *N*-acetylamphotericin A in 5 ml of methanol at 0°C. After 10 minutes, excess diazomethane and solvents were removed from the mixture under vacuum, and the product was dissolved in methanol (1 ml) and precipitated with 20 ml of diethyl ether, yielding 5 mg of the methyl ester. Solvent system "a" was employed for chromatographic analysis.

N-Acetyldodecahydroamphotericin A

N-Acetylamphotericin A (165 mg) was hydrogenated over 10% palladium on barium sulfate catalyst in 5 ml of methanol - water (9:1) at room temperature and atmospheric pressure. After the reaction had ceased (18 hours), the catalyst was filtered and washed with methanol. Solvents were removed, and the residue was precipitated with diethyl ether. The yield of *N*-acetyldodecahydroamphotericin A was 140 mg. Progress of the reaction was monitored by TLC (system "a") and by UV analysis.

N-Acetyl-N-methyltetradeca-O-methylheptadecahydroamphotericin A (II) and its 1,1,13,16',16'-Pentadeuterio Analogue (III)

A mixture of *N*-acetyldodecahydroamphotericin A (70 mg), tetrahydrofuran (2 ml) and water (1 ml) was cooled to 5°C, and sodium borohydride in water was added portionwise, maintaining reductive medium for 5 hours. The reaction mixture was diluted with methanol (2 ml) and Dowex 50 (H⁺) was added until pH 4.5. The resin was removed by suction filtration and washed with methanol. The filtrate was evaporated four times to dryness with the addition of methanol. The foamy residue was dissolved in methanol (3 ml) at 0°C, and a solution of diazomethane in diethyl ether was added until the yellow color persisted. The mixture was left for 5 minutes and evaporated to dryness. The residue was dissolved in a small amount of methanol and precipitated with diethyl ether - hexane (2: 1) mixture. The precipitate was separated, washed twice with hexane and dried, yielding 53 mg of ester. The crude ester was dissolved in dry tetrahydrofuran(7 ml), and lithium borohydride (10 mg) was added. The reaction mixture was refluxed for two hours; then after cooling, acetone was added to destroy excess reducing agent. The flask contents were diluted with water (5 ml), adjusted with Dowex 50 (H⁺) to pH 4.5 and filtered. The filtrate was evaporated to dryness, and the residue was redissolved in methanol and evaporated four times. The crude polyol (30 mg) was precipitated with diethyl ether - hexane (2: 1) from methanol. A 50% oil dispersion of sodium hydride (50 mg) was twice

washed with anhydrous hexane $(2 \times 2 \text{ ml})$ and added to a solution of crude polyol in tetrahydrofuran (6 ml).

Methyl iodide (100 μ l) was added in two portions, and the mixture was stirred for 20 hours. The suspension was then filtered with a glass sinter funnel. The resultant solids were washed with benzene, and the filtrates were combined and evaporated to dryness. The oily residue was redissolved in benzene (10 ml), washed with water (3 × 5 ml) and the benzene layer was evaporated to dryness yielding 24 mg of a crude product, II.

Crude II was applied to a silica gel 60 column (90×12 mm) and developed with benzene - ethyl acetate - ethanol, 25: 25: 3. A chromatographically pure product of II (16 mg) was obtained.

The pentadeuterio analogue (III) was prepared employing identical reactions and the work-up procedures cited above for preparation of II, except that sodium borodeuteride, lithium borodeuteride and deuterium oxide, respectively were used.

Acknowledgments

These studies have been supported by the Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw. The authors also acknowledge the gift of pure amphotericin A from E. R. Squibb and Sons, Princeton, N.J., USA.

References

- VANDEPUTTE, J.; J. L. WACHTEL & E. T. STILLER: Amphotericins A and B, antifungal antibiotics produced by a streptomycete. II. The isolation and properties of the crystalline amphotericins. Antibiot. Ann. 1955-56: 587~591, 1956
- MECHLIŃSKI, W.; C. P. SCHAFFNER, P. GANIS & G. AVITABILE: Structure and absolute configuration of the polyene macrolide antibiotic amphotericin B. Tetrahedron Lett. 1970: 3873~3876, 1970
- BOROWSKI, E.; J. ZIELIŃSKI, T. ZIMIŃSKI, L. FALKOWSKI, P. KOŁODZIEJCZYK, J. GOLIK & E. JERECZEK: Chemical studies with amphotericin B. III. The complete structure of the antibiotic. Tetrahedron Lett. 1970: 3909~3914, 1970
- PAWLAK, J.; J. ZIELIŃSKI, J. GOLIK, J. GUMIENIAK & E. BOROWSKI: The structure of lienomycin, a pentaene macrolide antitumor antibiotic. I. The structure of the carbon skeleton and the location of functionalities. J. Antibiotics 33: 989~997, 1980
- PAWLAK, J.; J. ZIELIŃSKI, J. GOLIK, E. JERECZEK & E. BOROWSKI: The structure of lienomycin, a pentaene macrolide antitumor antibiotic. II. The location of the pentaene chromophore and of six isolated double bonds. The complete structure of the antibiotic. J. Antibiotics 33: 998~1004, 1980
- KOCHETKOV, N. K.; O. S. CHIZHOV & B. M. ZOLOTAREV: Mass spectrometry of hexosamines. Carbohydr. Res. 2: 89~92, 1966